LA-UR-80-2815 TITLE: THE LIGHT AND VELOCITY CURVE BUMPS FOR BW VULPECULAE AUTHOR(S): William Dean Pesnell Arthur N. Cox MASTER SUBMITTED TO: Proceedings of the IAU Colloquium 58 "Stellar Hydrodynamics" By acceptance of this article for publication, the publisher recognizes the Government's (license) rights in any copyright and the Government and its authorized representatives have unrestricted right to reproduce in whole or in part said article under any copyright secured by the publisher. The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the USERDA. los alamos scientific laboratory of the University of California LOS ALAMOS, NEW MEXICO 87848 An Affirmative Action/Equal Opportunity Employer THE CLAIMER The state of s ### THE LIGHT AND VELOCITY CURVE BUMPS FOR BW VULPECULAE William Dean Pesnell University of Florida and Arthur N. Cox Los Alamos Scientific Laboratory ## I. INTRODUCTION BW Vulpeculae (HD 199140) is a well known Beta Cephei star. with several unusual characteristics. It possesses the largest amplitude in both light and radial velocity variations, of any star in this classification. The most outstanding feature of the observations is a standstill or bump, on the light curve, accompanied by doubled lines in the radial velocity observations. In this paper, we have attempted to explain these phenomena with two different models. Firstly, the resonance mechanism, from Simon and Schmidt, and secondly, a non-linear calculation. ## II. RESONANCE MECHANISM The resonance mechanism was first advanced by Simon and Schmidt (1976). It can be used to explain the "bumps" on the light curves of Cepheid and BL Herculis variables. (Hodson and Cox (1980) and King et al. (1980). While the nature of the standstill found in BW Vul is quantitatively different from that of the Cepheids, a study was undertaken to determine whether a resonance was at work in the star. The presence of a resonance is denoted by the following relationship $$0.47 \le \Pi_2/\Pi_0 \le 0.53$$ where π_2 = period of second radial overtone mode π_0 = period of the radial fundamental mode. From Cepheid calculations (Stobie 1969a,b), the above ratio is also correlated with the position of the bump with respect to the maximum of the light curve. The relationship is: $\Pi_2/\Pi_0 < 0.50$ bump on rising light $\Pi_2/\Pi_0 > 0.50$ bump on falling light $\Pi_2/\Pi_0 = 0.50$ bump at maximum We would therefore expect a model from BW Vul to have a period ratio slightly less than one half. Models spanning the region of the HR diagram where the Beta Cephei variables are found were constructed using a stellar modeling code developed at LASL. A linear, non-adiabatic stability analysis, using Castor's code (1971), was performed on the models. This yielded periods and eigenfunctions for the radial fundamental and first two radial overtone pulsational modes. Several evolutionary states of these massive stars were studied. The end of the hydrogen exhausted core contraction phase is used as being the most appropriate. This gave the closest fit to the period of BW Vul for a radial fundamental mode. An assumed mass-luminosity relationship is given in Table 1. Values were obtained from Iben (1965a,b.) and Lamb, Iben and Howard (1976). Depletion of core hydrogen due to nuclear burning was calculated from the same references, and a representative graph of hydrogen abundance is given in figure 1. (11 $\rm M_{\odot}$) Fig. 1 Hydrogen Abundance vs. Mass Fraction When compared with earlier calculations (Lesh and Aizenman 1974), our periods are shorter by a noticable amount. The length of the radial fundamental mode was considered by Lesh and Aizenman to discount it's presence in Beta Cephais. Our calculations show that the radial fundamental is not eliminated in the lower luminosity stars, but is still unlikely in those stars of higher luminosity. This shortening of the period is directly related to the mass concentration of the star. According to Ledoux and Walraven (1958) a more centrally condensed star has a shorter period. Decreasing the hydrogen content of the core will increase the mean molecular weight, increasing the density of the core. This results in a more centrally condensed star and therefore a shorter fundamental period. (See Cox and Giuli, 1968, p.764). The results of the calculations are summarized in figure 2. Straight lines represent lines of constant period, and are labeled by the appropriate radial fundamental period, in days. The two curves are lines of constant period ratio for Π_2/Π_0 . The crosses are observed points (Beeckmans and Burger, 1977, Jakate, 1979, 1980, Lesh and Aizenman, 1974, 1978.). Fig. 2 Theoretical H-R Diagram As the period ratios are nowhere near the value of one half, the resonance mechanism is clearly not responsible for the structure of BW Vul's light curve. # III. NON-LINEAR CALCULATIONS When our first hypothesis failed to explain the bump, a second one was tried. Using a non-linear, Lagrangian, radiation, hydrodynamic code at LASL, a radial fundamental eigenfunction was driven at amplitudes suitable for BW Vul. Details of the model are Table 2. The theoretical amplitude was chosen from a formula by Campos and Smith (1980). $$A_{T} = \frac{4}{3} \quad K \left(\frac{10}{V_{R}}\right)^{0.06}$$ with $A_{_{\mathbf{T}}}$ = theoretical radial velocity amplitude = 100 Km/sec K = observed radial velocity amplitude = 80 Km/sec (Lane & McAlary, 1980) V_R = rotational velocity = 38 Km/sec (Watson, 1972) The results can be seen in figure 3, 4, and 5. There is a bump on the radial velocity curve at the proper phase. The radius dependence agrees well with that of Goldberg et al. (1976). However, the amplitude is far too large, 2K = 320 Km/sec as compared with an observed amplitude of 2K = 160 Km/sec The original theoretical amplitude was increased due to the application of the Stellingwerf SPS method to obtain a full amplitude oscillation. The initial Newton-Raphson corrections boost the amplitude to twice it's original value. The bump is a consequence of the rapid increase in the amplitude that resulted. Models that did not experience this corrective boost did not show the bump feature. As BW Vul experienced a similar "burst" in 1947 (Eggen 1948), this does not seem an unreasonable explanation for the bump. Although an explanation for the bump may be given, there is no driving in this model, so a true full amplitude pulsation will not be found. Further work will be done to see if the bump's existence can be explained more fully. ## IV. CONCLUSIONS We have attempted to model "bumps" in the light and radial velocity curves of the Beta Cephei star BW Vulpeculae. Two mechanisms, a resonance phenomena and non-linear pulsations, were investigated. The resonance condition was clearly not fulfilled, the calculated period ratio being approximately 0.60, where a value of 0.50 ± 0.03 is required for resonance. In the non-linear calculation, the bump appears, with the correct phase, but was found at an amplitude that is too large. Further, the light curve does not show any bump-like feature. The cause of the bump is the large spurious boost given the star's velocity field by the solution methods. The calculated periods of the stellar models are shorter than those of previous calculations, enhancing the possibility that these stars pulsate in a radial fundamental mode. Table 2. Model For BW Vulpecular Have Reduce Includelty $T_{eff} = \frac{\pi}{6}^{-1}$) $\frac{\pi}{2}^{-1}$. If $\pi_{eff} = \frac{\pi}{6}^{-1}$ and $\pi_{eff} = \frac{\pi}{2}^{-1}$. If $\pi_{eff} = \frac{\pi}{6}^{-1}$ and $\pi_{eff} = \frac{\pi}{2}^{-1}$. The core is convective but we included only the envelope on the star, as this gave the desired fine equing in the atmosphere. Fig. 3 Radiative Luminosity vs. Time (6.99±10⁴sec) L(erg/sec) 16-6 92±10³⁷6 90±10³⁷ ab-2 12±10³⁷, 2 63±10³⁸ Dw vai non answer 11.06M, 25120K 177955, 1 60 tones Fig 4 Radial Velocity vs Time (6.99x10⁴sec) V(cm/sec) lb=-4.76x10⁴,4.78x10⁴ eb=-1.87x16⁷,2.16x10⁷ Fig. 5 Rodius vs. Time (6.99×10⁴sec) R(cm) 1b=1.09×10¹¹,1.10×10¹¹ ob=4.57×10¹¹,5.37×10¹¹ bw. vul. non-linear 11.004₆, 25120K 177951₆, 1 60 zones We would like to thank Stephen Hodson for his help on the computer. The computing facilities were provided by the Los Alamos Scientific Laboratory. ### V. BIBLIOGRAPHY Beeckmans, F. and Burger, M.: 1977, Astron. Astrophys. 61, p.815. Campos, A. J. and Smith, M. A.: 1980, Ap. J. 238, p.250. Castor, J. I.: 1971, Ap. J. 166, p.109. Cox, J. P. and Giuli, R. T.: 1968, Principles of Stellar Structure Gordon and Breach, Science Publ. Inc. N. Y. Eggen, O. J.: 1948, Ast. J. 53, p.197. Goldberg, B. A., Walker, G. A. H. and Odgers, G. J.: 1976, Ast. J. 81. p. 433. Hodson, S. W. and Cox, A. N.: 1980, in Nonradial and Nonlinear Stellar Pulsations, ed. H. A. Hill and W. A. Dziembowski (Springer-Verlag, Berlin) p.34. Iben, Icko, Jr.: 1965a, Ap. J. 143, p.516. Iben, Icko, Jr.: 1965b, Ap. J. 143, p.505. Jakate, S. M.: 1979, Astron. Astrophys. 84, p.374. Jakate, S. M.: 1980, Ast. J. 84 p.552. King, D. S., Cox, A. N. and Hodson, S. W.: 1980, LASL Preprint LA-UR-80-1870. Lamb, S. A., Iben, Icko, Jr. and Howard, W. M.: 1976, Ap. J. 207, p.209. Lane, M. C. and McAlary, C. W.: 1980, unpublished communication. Ledoux, P. and Walraven, T. H.: 1958, Handbuch der Physik, Bd 51, e'. S. Flugge (Springer-Verlag, Berlin), p.468. Lesh, J. R. and Aizenman, M. L.: 1974, Astron Astrophys. 34, p.203. Lesh, J. R. and Aizenman, M. L.: 1978, Ann. Rev. Astron. Astrophys. 16, p.215. Simon, N. R. and Schmidt, E. G.: 1976, Ap. J. 205, p.162. Stobie, R. S.: 1969a M. N. R. A. S. 144, p.485. Stobie, R. S.: 1969b M. N. R. A. S. 144, p.511. watson, R. D.: 1972, Ap. J. Suppl. 24, p.167.